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The form of cavities for mode (2.1) is shown in Fig.2 for the same a but various 8., The 
solid lines relate to steady cavities, the dash lines for 3= -o.i, and the dash-dot lines for 

@ = -0.02, The cavities at (r= 0.f36, 0.25, 0.5 are denoted by numerals 1, 2, and 3. 
In Fig.3 the dependence L(c) for A -0.023;0=0.063 for mode (2.3) are shown by solid lines, 

and the dash lines relate to calculations of the steady state for the same a W. The dis- 

tribution of r-6 along the cavity for mode (2.1) for 3= -0.02 are given in Fig.4; curves 

1 and 2 relate to z= 17 and 23. 
The convenience of judging the degree of unsteadiness of cavities using the value of r 

is obvious. 
We may add that owing to the weak dependence of the form of the cavity on the shape of 

the cavitating body results of unsteady cavitational flows given here can be generalized 
considerably. 
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THE STEADY SPECTRA OF PARTICLES IN DISPERSIBLE SYSTEMS 
WITH COAGULATION AND FRAGMENTATION* 

V.N. PISKUNOV 

The formation of a steady dimensional distribution of particles (particle 
spectra) is dispersible systems with coagulation and fragmentation is 
considered. The reiation between versions of the kinetic erI;lation that 
defines these processes is traced. An analytical solution is obtained 
for the parametric set of coagulation coefficients and the velocities of 
paired fragmentation. The steady spectrum of particles is investigated 
in the case when the fragmentation is of the multiple type. 

The kinetic equation of coagulation with fragmentation in the case when the rate of particle 
supply to the system to compensate for the fragmented particles is linear with respect to their 
concentration was first formulated in /l/. The fragmentation process can stabilize a coagulating 
dispersed aystem, and result in the formation of steady spectra. Some analytical results on 
the behaviour of systems with coagulation and fragmentation were obtained in /2-S/. 

1. The variation with time t of the particle spectrum in three-dimensionally homogeneous 
systems with coagulation and fragmentation is defined by the kinetic equation 

dc (g. f),r3f = s (c; g. I) + Q (c: g. f) 

*Prikl.Matt?m.Mekhan.,49,6,1035-1039,1985 

(1.1) 
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where c(~,I) is the concentration of particles of mass g in unit volume (the particle spectrum); 
the operator S defines the input to the balance of the coagulation process, and the operator 
Q is the input of fra*ntation. As a result of binary collisions tfie coagulation according 
to Smoluchowski's theory is given by (see, for example, /6/I 

f al 

5 (c; g, I) = + 1 K (I- n ,n)c(p- n)c(n)dn -c@,f) 1 K(g,nfc @.I) dn 
0 0 

where K(g,nJ are the coagulation coefficients. 
The operator Q can be expressed in two forms, The first of these is i'li' 

(1.2j 

The function y(n,g) defines the rate of input into the system of particles of mass n, 
produced by the fragmentation of particles of mass g. Obviously y(n.g)=O when n>g. It is 
convenient to represent the quantity T(R. g) in the form /6/ 

where 7(g) has the meaning of the lifetime of particle of mass g. and %(n.g) defines the 
spectrum of particles formed by the fragmentation. The integral condition in (1.4) is a 
consequencE? of the combined mass in the process of fragmentation. The second form of the 
operator Q applies to the case of fragmentation into two particles. The discrete version cf 
the kinetic equation is given in 121, and for a continuous kinetic equation it is /S/ 

Q(c;g,f)=~ijf,ii-g)c(n,f)dri-~ 2 j j (P - n, n) dn (1 51 
6 Q 

Here j(g.n) defines the fragmentation rate of particle (g- ,LJ into g and n. By its meaning 
the function f must be symmetric relative to its arguments, i.e. f(g,n)=f(n,g). 

Formula (1.5) is a special case of (1.x!. To prove this we transform the second term on 
the right side of 11.5) I taking into account the symmetry of f(8.n) and the equality 4 (n- gi= 
j (41. p - n) , and obtain 

6: 
+ nj (g - n, n)] dn = $ \ 71’1’ in, ej dn 

0 

it is possible to use the operator Q in the fvrr. (1.5!. 
Condition (1.61 indicates that in fragmentation particles g form the same nunber of 

particles n and (g- n)(in particular (1.6) is satisfied for fragmentation into two partlCleS). 
The most general fern of the operator Q is thus (1.3). Whenever v(n.g) has the property of 
symmetry (1.6), formulae (1.3) and (1.5) are equivaient, 

Besides the rate of processes of coagulation h'(g.n! and fragmentation ~(n.g) one of the 
basic quantities that determine the soitd.on of this problem is the mass of the particles per 
unit volume. 

P=y YC (P, I) dp (1.7) 

cl 

The substitution of explicit expressions for the operators S and Q into (1.1) shows 
that the above does not change with time, The steady state spectra of r"(g) in systems with 
coagulation and fragmentation are obtained from (I,11 when st{+~_tflar=ih The integral. relations 

(1.7) represent the additional condition that must be satisfied by the steady-state spectra 
cS (g). 

2. Confining ourseLves to the representation of thhe operator Q In the form (1.5), we 
obtain the steady-state spectra in the system with model coagulation and fragmentation 

I; (g, n> = a (gn? , f tg. n! = 9 (8 -I- 1111 ; b < 2 (2.1) 

Inthis case the lifetime i(g) of a particle of mass g decreases as g increases, and the 
spectrum %(n,gj of particles into which they are fragmented is constant in the interval 0 < 

Jr< g: 
2 

?(“I=. - @h’” ; ehPj=-$, n<e (2.2) 
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Introducing the function v(g)= &,I(,), we obtain from (1.1) when a~!&= 0 the equation 

a Itc(~--n)u(n)dn-*c(U)~;(n)dn]=B[g"(l)--2jv(n)dn~ 
; 0 8 

whose solution is u(g)= ~-G-~. The value of the constant n is determined from condition 
(1.7) that is satisfied when %<2. The final expressions for the steady-state spectra c'(g) 
has the form 

Note that when 121 the denumerable particle concentration 
Dz 

‘3” = c c’ (8) & (2.4) 
b 

formally become infinite. The solution in the special case I= 0 similar to (2.3) was obtained 

in /5/ (where it is presented with some errors). The solution of the discrete version of the 
kinetic equation similar to (2.3) can be obtained using the method described in /4/. 

3. Let us analyse the steady-state spectrum of a system with constant coagulation 
coefficients K(g,n)= a and with multiple fragmentation defined by the function ~(n,g)= b/n. 
Constant coagulation coefficients nearly approximate the process of Brownian coagulation /7/, 
while the function y= p/n defines the fragmentation of particles whose lifetime is independent 
of their dimensions, andthe spectral function O(n,g) that ensures primarily the splitting 
of small particles, that is most convenient from the energy point of view /2/. 

7 (g) = l/B; 8 (n, 8) = f/n, n < g (3.1) 
Eq.(l.l) for steady-state spectra in this case has the form 

(3.2) 

For sinugular dimension distributions of particles similar to (2.3) when A>& the 
integrals in the coagulation operator S may be divergent, and in the formula for S(c';g) they 
must be taken as the limit 

g-t 
1 

S(c’;c)= lim T 
[ c 

c'(:-rz)c'(n)dn-cc' 
e-0 ; 

(8) 1 c’ (n) dn] 
L 

(3.3) 

Tc avoid problems of diverger,ce WE use the %nctlcn gS(c';g) ir. the fcllowing fom /8i: 
E;i 

?S !r’: P) = ad CC) $-fs a $ [ \ q, (2 - n) q,, (n) dn ; 3 
cc 

To(>)= (r’(n~dr. pI(r)=f nc’lnidn 
. s 

Muitiplying !_.21 by g ar,i inte;razin? fror; g tc octakin~ '2.4~ ir.zo accou..t, we obtain 
an equation in which it is possible tc set e=O 

-&[Cw- ] n) VC (n) dn +aPqrS(F)- B.gVO(l! = 0 (3.5) 
; 

We use the Laglace traxsicr:,ations CC sclve '2.5, 

The connecticn betweer. L IQ) and L @f1! is obtained from the relation gdp$dg = dbldg which 
leads to the closed equation: for u (sj= L(qo,r) 

18 + au @)I 
du (4 

- + au’(s) = 0; ,.js Y (0)s p 

The solution of (3.6) is the function U(I) defined by the transcendental equation 

u (si cxp lab-*ru (r)] = P (3.7) 

Using the Burman-Lagrange fomula /9/', we obtain from (3.7) the expansion of u (6) in 
powers of s 
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The coefficients of this series are expressed in terms of the moments of the distribution 
function C(a) 

consequently 
(3.8) 

To find the asymptotic form of c"(g) when g> +, we note that the singular point s0 of 
the function u(s) is determined in accordance with (3.6) from the equation s~u(s,,)= -8a-1. the 
function u f%) itself is finite but has an infinite derivative. Using the solution (3.7). 
we obtain 

where e is the base of natural logarithms. To find the type of singularity we neglect in 
(3.6) the change in s in the proximity of s0 in comparison with the variation of u (P) 

du 
IB + a+ WI yg + a!G (s) = 0; 

u (4 
In p +*=2++* 

Expanding in series in powers of E(S)= i--u(s),@) and confining ourselves to leading terms, 
we obtain 

This behaviour of the representation L(Q,,s) of the singular 
to the following asymptotic form of r(g) when 331 /9/: 

Ncte t&at the asymptotic formula (3.9) is in good agreement with formula 13.8) for moments 

point nearest to zero correspondr 

(3.9) 

since the moments.!l,with large m must be determined by the "tail" of the spectrum of cs (8). 
To estimate the scale g,,, at which the asymptotic form 13.9) begins to act we use the 

property that for iarge m the quantities Mti,ai are basically determined by the spectruim (3.9) 
at the saddle point g,,, = (m - a21 Q~-~~~~. The relative difference between .kf,a" and M,does not 
exceed 10% when m>,6; it is, consequently, possible tc assume that g,, = ~,*18-'pe. 

The behalyiour of the steady-state spectrum cQ (FI as g-0 is determined using (3.5) 
which we represent in the form 

+- nticS ('-R! co(,i)d,i = fl+c. (f) (3.101 

By substituting c (R' z.lg-? we see that the values of p<l that ensure the finiteness 
f-F 

of the quantity 
* 

((> (01 = \: r‘(r) de 

b 

caxnct satisfy !3.1G) as c--t. The singular r'(g) with ~;>i also do not agree with (3.10!, 
i.e. *he unique non-contra6ictoq value is 1. = 1. Substituting C~ (gj = Aig,c,(g, = --A fnp into 
,- 
ij.10) and equatinc _ the coefficients of leading terms in the region of small particle mas5ec 
we obtain 

C0 1Ri = p izp1 (3 ii) 
EN' 

The integral of the denumerable concentration (2.4) is logarithmically divergent at the 
lower 11mi.t. It is interesting that as r-0 a steady-state spectrum is formed in the model 
considered, which is independent of the particle mass per unit volume p, and is determined 
only bythe ratio of the rates of the processes of fragmentation and coagulation. 

1. 
2. 

3. 

4. 
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IN THE CASE OF 

S.I. BOYEV and M.A. SUMBATYAN 

Harmonic high frequency oscillations of a rigid stamp coupled without 
friction tc an elastic half-plane are considered. The main difficulty 
in constructing the high-frequency asymptotic forms is that of carrying 
out the effective factorization of the kernel of the basic integral 
equation. A function is proposed, which takes into account all properties 
of the kernel, enables it to be uniformly approximated and is easily 
factorized. Such a solution of the problem of approximate factorization 
makes it possible to write, in a simple explicit form, the principal term 
of the asymptotic expression of the solution. The nature of the distribution 
of contact stresses under the stamp is studied, as well as the compliance 
of the foundation and phase shift between the applied force and the 
displacement of the stamp. 

The probiem was studied earlier in /l-4/ for the low-frequency case. Three classes of 
solutions were constructed in /5/, the low frequency solution, one effective at medium 
frequencies, and a high-frequency scl.ation. The high frequency solution of /5/ however does 
not capture the true root-type singu larities cf the contact stress near the sharp edges of 
the stamp. 

1. As we know /4, 5,, the problerr. in question car. be reduced to the fellowing.integral 
equation: 

The dependence of all quantities on time is assumed to be of the type !(~,f)= Re[f(+)c-'X1]. 
In (1.1) F(Z) is the contact stress amplitude, W is the stamp oscillation amplitude, h is a 
parameter whichis small at high frequencies, G,v are the elastic constants, a is the stamp 
half-width and ): is the frequency of the oscillations. The initial Eq.tl.1) is equivalent 
to the following twoEqs./6/: 

(1.3) 

provided that 
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